

ANNUAL DRINKING WATER QUALITY REPORT 2020

Source Protection

The Drinking Water Source Protection Plan for South Salt Lake is available for your review. It contains information about source protection zones, potential contaminating sources, and management strategies to protect our drinking water.

Our sources have been determined to have a low level of susceptibility to contamination by sources. We have developed management strategies to further protect our sources from contamination. Please contact us if you have questions or concerns about our source protection plan.

Cross Connection

There are many connections to our water distribution system. When connections are properly installed and maintained, the system concerns are very minimal. However, unapproved and improper piping changes or connections can severely affect not only the availability, but also the quality of the water. A cross connection may allow polluted water or even chemicals that might not be water supply system water to enter the water supply. Cross connections can occur from many sources. Some people do not realize how they do. Do not make or allow minor connections at our homes. Even that a unprotected garden hose lying in the bushes next to the driveway after you have finished spraying is also a cross connection. When the cross connection has happened to exist at your home, or will happen to you, contact your water utility to learn more information about how you can help.

Potential Contamination

SOUTH SALT LAKE PUBLIC WORKS

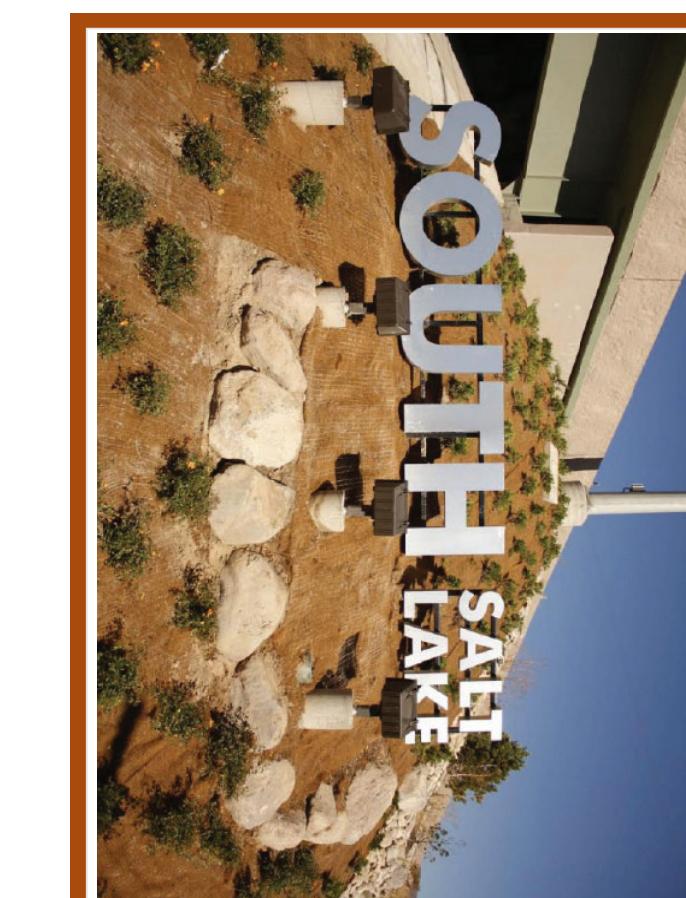
All sources of drinking water are subject to potential contamination by constituents that are naturally occurring or manmade. Those constituents can be microbes, organic or inorganic chemicals, or radioactive materials. Among these, including drinking water, are some naturally occurring radioactive materials. Some of these constituents do not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some chemicals may become carcinogens, particularly to consumers of drinking water, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC guidelines on drinking water are based on the best available information from the Safe Drinking Water Hotline (800-426-4791).

Copper

Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's disease should consult their personal doctor.

Lead


If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. South Salt Lake City Water System is responsible for providing high-quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for cooking, drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize lead exposure are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Total Coliform

The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. Coliform bacteria are usually harmless, but their presence in water can be an indication of disease-causing bacteria are present in the water supply. If this limit is exceeded, special follow-up tests are done to determine if harmful bacteria are present in the water supply. The public is informed by news media, television or radio. To comply with the stricter regulation, we have increased the coverage area of our chlorine distribution system.

We constantly monitor for various constituents in the water supply to meet all regulatory requirements. In February of 2019 we failed to test for coliform bacteria. Water quality may change without any visible indication due to unanticipated environmental factors. For this reason, we are required to sample for coliform bacteria on a monthly basis. This violation does not necessarily pose a health risk. We have reviewed why we failed to take our routine coliform bacteria tests and have taken steps to ensure that it will not happen again.

Conservation Practices	
Water conservation measures are an important first step in protecting our water supply. Such measures not only save the supply of our source water, but you can also save money by reducing your water bill. Here are a few suggestions:	
• Take shorter showers	• Use water-saving nozzles
• Wash full loads of laundry	• Run dishwasher only when full
• Repair leaks in faucets and hoses	• Do not use toilet for trash disposal
• Use mulch around plants and shrubs	• Water lawn/garden in early morning or evening
• Shut off sprinklers manually or use a rainfall shut-off device	• Use water from a bucket to wash cars and save hose for rinsing

SOUTH SALT LAKE PUBLIC WORKS

"THIS REPORT SHOWS OUR WATER QUALITY AND WHAT IT MEANS TO YOU, OUR CUSTOMER"

Questions?

If you have any questions about this report or concerning your water utility, please contact **Jason Taylor at 801-483-6045**. We want our valued customers to be informed about their water utility. If you want to learn more learn more, please attend any of our regularly scheduled meetings. They are held on the 2nd and 4th Wednesday of every month at 7:00 PM. The meetings are held at 220 East Morris Avenue.

2nd Floor of the Council Chambers
South Salt Lake City, UT 84115

South Salt Lake Public Works
195 W Oakland Avenue
South Salt Lake City, UT 84115

Office Hours:
Monday - Friday
7:30 a.m. - 4:00 p.m.

Utility Billing Questions:
220 E. Morris Ave. #200
South Salt Lake City, UT 84115
P 801-483-6074
utility@sslc.com

SAMPLE RESULTS

South Salt Lake City Water System routinely monitors for constituents in our drinking water in accordance with the Federal and Utah State laws. The following table shows the results of our monitoring for the period of January 1st to December 31st, 2020. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk.

Contaminant	Violation Y/N	Level Detected ND/Low-High	Unit Measurement	MCLG	MCL	Date	Likely Source of Contamination
Orthophosphates	N	ND-0.01	ug/L	NE	UR	2020	Erosion of natural deposits
Potassium	N	ND-2.4	ppm	NE	UR	2020	Erosion of natural deposits
Silica (Silicon Dioxide)	N	ND-4.7	1/cm	NE	UR	2020	Erosion of natural deposits
TSS (Total Suspended Solids)	N	ND-2.2	ug/L	NE	UR	2020	Decomposition of organic material
Vanadium	N	ND-1.1	ug/L	NE	UR	2020	Naturally Occurring
Secondary Inorganics							
Aluminum	N	ND-1.1	ug/L	NE	SS=0-200	2020	Erosion of naturally occurring deposits and treatment residuals
Chloride	N	11.594	Mg/L	NE	SS=250	2020	Erosion of naturally occurring organic material and suspended particles
Color	N	3.0-0.0	CU	NE	SS=15	2019	Decay of naturally occurring organic material and suspended particles
Iron	N	ND-225	ug/L	NE	SS=300	2020	Erosion of naturally occurring deposits
Manganese	N	ND-34	ug/L	NE	SS=50	2020	Erosion of naturally occurring deposits
pH	N/A	6.7-4.2	NA	NE	SS=4-5.5	2020	Naturally occurring and affected by chemical treatment
Zinc	N	ND-10	ug/L	NE	SS=5000	2020	Erosion of naturally occurring deposits
Radioactive Pesticides/PCBs/SDCs							
Bis (2Butylphenyl)phthalate	N	ND	ug/L	0	6.0	2020	Discharge from rubber and chemical factories
VOCS							
Bromform	N	ND-2.7	ug/L	NE	UR	2019	By-product of drinking water disinfection
Bromoform/methane	N	ND-1.44	ug/L	NE	UR	2019	By-product of drinking water disinfection
Chloroform	N	ND-6.16	ug/L	NE	UR	2019	By-product of drinking water disinfection
Dibromochloromethane	N	ND-4.4	ug/L	NE	UR	2019	By-product of drinking water disinfection
Tetrachloroethylene	N	ND-0.5	ppb	0	5	2020	Discharge from factories and dry cleaners
Unregulated Parameters							
Alph-BHC	N	ND	ug/L	NE	UR	2020	
Clorpyrifos	N	ND	ug/L	NE	UR	2020	
Dimethylpin	N	ND	ug/L	NE	UR	2020	
Ethoprop	N	ND	ug/L	NE	UR	2020	
Methox-Oxone	N	ND	ug/L	NE	UR	2020	
Oxyfluorfen	N	ND	ug/L	NE	UR	2020	
Pentammin	N	ND	ug/L	NE	UR	2020	
Profenofos	N	ND	ug/L	NE	UR	2020	
Tebuconazole	N	ND	ug/L	NE	UR	2020	
Butylated Hydroxyanisole	N	ND	ug/L	NE	UR	2020	
Quinoline	N	ND	ug/L	NE	UR	2020	
o-Toulidine	N	ND	ug/L	NE	UR	2020	
N-Butanol	N	ND	ug/L	NE	UR	2020	
2-Methoxyethanol	N	ND	ug/L	NE	UR	2020	
2-Propen-1-ol (Allyl Alcohol)	N	ND	ug/L	NE	UR	2020	
Geranilium	N	ND	ug/L	NE	UR	2020	
HAA5	N	22-39.6	ug/L	NE	UR	2020	
HAA8B	N	22-9.0	ug/L	NE	UR	2020	
HAA9	N	4.1-47.5	ug/L	NE	UR	2020	
Total microcystins	N	ND	ug/L	NE	UR	2020	
Microcystin-LA, -RR, -LF, -VR, -LR, -CF	N	ND-2.6	ppb	0	5	2019	Decay of natural and man-made deposits
Radium 226 & 228	N	ND-1.6	ppb	0	5	2019	Decay of natural and man-made deposits
Gross Beta	N	1.2-32	ppb	0	50	2020	Decay of natural and man-made deposits
Radioactive Contaminants							
Alkalinity/Bicarbonate	N	25-182	Mg/L	NE	UR	2020	Naturally Occurring
Alkalinity/Carbonate	N	ND	Mg/L	NE	UR	2020	Naturally Occurring
Alkalinity/C02	N	28-132	Mg/L	NE	UR	2016	Naturally Occurring
Ammonia	N	0.3	Mg/L	NE	UR	2018	Rainfall from fertilizer and naturally occurring
Alkalinity as Ca(OH)3	N	21-176	ppm	NE	UR	2020	Erosion of natural deposits
Bromide	N	ND-16.9	ppm	NE	UR	2020	Naturally Occurring
Calcium	N	26-51.7	ppm	NE	UR	2020	Erosion of natural deposits
Boron	N	39	ug/L	NE	UR	2020	Naturally Occurring
Chloropicrin	N	ND	ug/L	NE	UR	2014	Measures amount of organic compounds in water. Naturally Occurring
Cyanide Total	N	ND-2.0	ug/L	NE	UR	2020	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Conductance	N	122-485	umhos/cm	NE	UR	2020	Naturally Occurring
Dioxin	N	ND	ug/L	NE	UR	2009	Industrial Discharge from factories
Hardness-Calcium	N	16-160	Mg/L	NE	UR	2020	Erosion of natural deposits
Hardness-Total	N	43-481	Mg/L	NE	UR	2020	Erosion of natural deposits
Geosmin	N	ND-5.9	ug/L	NE	UR	2020	Naturally occurring organic compound associated with musty odor
Chromium VI	N	ND	Mg/L	NE	UR	2011	Industrial runoff and naturally occurring
Grain/Gallons	N/A	7-28.9	Calculated	N/A	N/A	2019	
Non-Carbonates	N/A	12-222	Calculated	N/A	N/A	2019	
Magnesium	N	63-17	ppm	NE	UR	2020	Erosion of natural deposits
Molybdenum	N	ND-2.3	ppb	NE	UR	2020	By-product of copper and tungsten mining
Oil & Grease	N	ND	Mg/L	NE	UR	2016	Petroleum hydrocarbons can either occur from natural underground deposits or from man made lubricants

Table Definitions

In the following table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions.

Maximum Contaminant Level

The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal

The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

ND/Low-High - For water systems that have multiple sources of water, the Utah Division of Drinking Water has given water systems the option of listing the test results of the contaminants in one table, instead of multiple tables. To accomplish this, the lowest and highest values detected in the multiple sources are recorded in the same space in the report table.

Nephelometric Turbidity Unit (NTU) - Nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Parts per million (ppm) or Milligrams per liter (mg/L) - One part per million corresponds to one minute in 2,000 years, or a single penny in \$10,000.

Parts per trillion (ppt) or Micrograms per liter (ug/L) - One part per billion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000.

Picocuries per liter (pCi/L) - Picocuries per liter is a measure of the radioactivity in water.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Date - Because of required sampling time frames, i.e., yearly, 3 years, 4 years and 6 years, sampling dates may seem outdated.